POST
/api/v1/embeddings
Generate vector embeddings for text input. Use for semantic search, RAG, clustering, and similarity comparison.
Request Body
| Parameter | Type | Description |
|---|---|---|
modelrequired | string | Embedding model, e.g. "text-embedding-3-small" |
inputrequired | string | string[] | Single text or array of texts to embed. |
encoding_format | string | "float" or "base64"Default: "float" |
Examples
javascript
import OpenAI from "openai";
const client = new OpenAI({
apiKey: "rw_live_xxxxx",
baseURL: "https://railwail.com/api/v1",
});
const response = await client.embeddings.create({
model: "text-embedding-3-small",
input: "Hello world",
});
console.log(response.data[0].embedding.length); // 1536Response
JSON
{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [0.0023064255, -0.009327292, ...],
"index": 0
}
],
"model": "text-embedding-3-small",
"usage": {
"prompt_tokens": 2,
"total_tokens": 2
}
}Compatible Models
text-embedding-3-small
text-embedding-3-large
text-embedding-ada-002
nomic-embed-text
bge-large-en-v1.5